3.7.50 \(\int \frac {x^3 (A+B x)}{(a^2+2 a b x+b^2 x^2)^{5/2}} \, dx\)

Optimal. Leaf size=188 \[ \frac {x^4 (A b-a B)}{4 a b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {3 a B}{b^5 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {3 a^2 B}{2 b^5 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {B (a+b x) \log (a+b x)}{b^5 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {a^3 B}{3 b^5 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 188, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {770, 78, 43} \begin {gather*} \frac {x^4 (A b-a B)}{4 a b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {3 a B}{b^5 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {3 a^2 B}{2 b^5 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {a^3 B}{3 b^5 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {B (a+b x) \log (a+b x)}{b^5 \sqrt {a^2+2 a b x+b^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^3*(A + B*x))/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

(3*a*B)/(b^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + ((A*b - a*B)*x^4)/(4*a*b*(a + b*x)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^
2]) + (a^3*B)/(3*b^5*(a + b*x)^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (3*a^2*B)/(2*b^5*(a + b*x)*Sqrt[a^2 + 2*a*b*
x + b^2*x^2]) + (B*(a + b*x)*Log[a + b*x])/(b^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 770

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {x^3 (A+B x)}{\left (a^2+2 a b x+b^2 x^2\right )^{5/2}} \, dx &=\frac {\left (b^4 \left (a b+b^2 x\right )\right ) \int \frac {x^3 (A+B x)}{\left (a b+b^2 x\right )^5} \, dx}{\sqrt {a^2+2 a b x+b^2 x^2}}\\ &=\frac {(A b-a B) x^4}{4 a b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {\left (b^2 B \left (a b+b^2 x\right )\right ) \int \frac {x^3}{\left (a b+b^2 x\right )^4} \, dx}{\sqrt {a^2+2 a b x+b^2 x^2}}\\ &=\frac {(A b-a B) x^4}{4 a b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {\left (b^2 B \left (a b+b^2 x\right )\right ) \int \left (-\frac {a^3}{b^7 (a+b x)^4}+\frac {3 a^2}{b^7 (a+b x)^3}-\frac {3 a}{b^7 (a+b x)^2}+\frac {1}{b^7 (a+b x)}\right ) \, dx}{\sqrt {a^2+2 a b x+b^2 x^2}}\\ &=\frac {3 a B}{b^5 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {(A b-a B) x^4}{4 a b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {a^3 B}{3 b^5 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {3 a^2 B}{2 b^5 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {B (a+b x) \log (a+b x)}{b^5 \sqrt {a^2+2 a b x+b^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 103, normalized size = 0.55 \begin {gather*} \frac {25 a^4 B+a^3 (88 b B x-3 A b)-12 a^2 b^2 x (A-9 B x)+6 a b^3 x^2 (8 B x-3 A)+12 B (a+b x)^4 \log (a+b x)-12 A b^4 x^3}{12 b^5 (a+b x)^3 \sqrt {(a+b x)^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(A + B*x))/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

(25*a^4*B - 12*A*b^4*x^3 - 12*a^2*b^2*x*(A - 9*B*x) + 6*a*b^3*x^2*(-3*A + 8*B*x) + a^3*(-3*A*b + 88*b*B*x) + 1
2*B*(a + b*x)^4*Log[a + b*x])/(12*b^5*(a + b*x)^3*Sqrt[(a + b*x)^2])

________________________________________________________________________________________

IntegrateAlgebraic [B]  time = 3.34, size = 2849, normalized size = 15.15 \begin {gather*} \text {Result too large to show} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(x^3*(A + B*x))/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

(2*A*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*(-a^6 - 3*a^5*b*x - 11*a^4*b^2*x^2 - 17*a^3*b^3*x^3 - 18*a^2*b^4*x^4 - 10*a
*b^5*x^5 - 4*b^6*x^6) + 2*A*Sqrt[b^2]*(4*a^6*x + 14*a^5*b*x^2 + 28*a^4*b^2*x^3 + 35*a^3*b^3*x^4 + 28*a^2*b^4*x
^5 + 14*a*b^5*x^6 + 4*b^6*x^7))/(b^4*Sqrt[b^2]*x^4*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*(-8*a^3*b^3 - 24*a^2*b^4*x -
24*a*b^5*x^2 - 8*b^6*x^3) + b^4*x^4*(8*a^4*b^4 + 32*a^3*b^5*x + 48*a^2*b^6*x^2 + 32*a*b^7*x^3 + 8*b^8*x^4)) +
((-32*a^7*A)/(b^3*Sqrt[b^2]) - (128*a^6*A*x)/(b^2)^(3/2) - (448*a^7*B*x)/(3*b^3*Sqrt[b^2]) - (448*a^5*A*x^2)/(
b*Sqrt[b^2]) - (1888*a^6*B*x^2)/(3*(b^2)^(3/2)) - (896*a^4*A*x^3)/Sqrt[b^2] - (1600*a^5*B*x^3)/(b*Sqrt[b^2]) -
 (1088*a^3*A*b*x^4)/Sqrt[b^2] - (8000*a^4*B*x^4)/(3*Sqrt[b^2]) - 768*a^2*A*Sqrt[b^2]*x^5 - (8576*a^3*b*B*x^5)/
(3*Sqrt[b^2]) - (256*a*A*b^3*x^6)/Sqrt[b^2] - 1792*a^2*Sqrt[b^2]*B*x^6 - (512*a*b^3*B*x^7)/Sqrt[b^2] + (32*a^7
*B*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/b^5 + (128*a^5*A*x*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/b^3 + (352*a^6*B*x*Sqrt[a^
2 + 2*a*b*x + b^2*x^2])/(3*b^4) + (320*a^4*A*x^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/b^2 + (512*a^5*B*x^2*Sqrt[a^2
+ 2*a*b*x + b^2*x^2])/b^3 + (576*a^3*A*x^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/b + (1088*a^4*B*x^3*Sqrt[a^2 + 2*a*b
*x + b^2*x^2])/b^2 + 512*a^2*A*x^4*Sqrt[a^2 + 2*a*b*x + b^2*x^2] + (4736*a^3*B*x^4*Sqrt[a^2 + 2*a*b*x + b^2*x^
2])/(3*b) + 256*a*A*b*x^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2] + 1280*a^2*B*x^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2] + 512*a
*b*B*x^6*Sqrt[a^2 + 2*a*b*x + b^2*x^2] + (128*a^4*B*x^4*ArcTanh[(-(Sqrt[b^2]*x) + Sqrt[a^2 + 2*a*b*x + b^2*x^2
])/a])/b + 512*a^3*B*x^5*ArcTanh[(-(Sqrt[b^2]*x) + Sqrt[a^2 + 2*a*b*x + b^2*x^2])/a] + 768*a^2*b*B*x^6*ArcTanh
[(-(Sqrt[b^2]*x) + Sqrt[a^2 + 2*a*b*x + b^2*x^2])/a] + 512*a*b^2*B*x^7*ArcTanh[(-(Sqrt[b^2]*x) + Sqrt[a^2 + 2*
a*b*x + b^2*x^2])/a] + 128*b^3*B*x^8*ArcTanh[(-(Sqrt[b^2]*x) + Sqrt[a^2 + 2*a*b*x + b^2*x^2])/a] - (128*a^3*B*
x^4*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*ArcTanh[(-(Sqrt[b^2]*x) + Sqrt[a^2 + 2*a*b*x + b^2*x^2])/a])/Sqrt[b^2] - (38
4*a^2*b*B*x^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*ArcTanh[(-(Sqrt[b^2]*x) + Sqrt[a^2 + 2*a*b*x + b^2*x^2])/a])/Sqrt[
b^2] - 384*a*Sqrt[b^2]*B*x^6*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*ArcTanh[(-(Sqrt[b^2]*x) + Sqrt[a^2 + 2*a*b*x + b^2*
x^2])/a] - (128*b^3*B*x^7*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*ArcTanh[(-(Sqrt[b^2]*x) + Sqrt[a^2 + 2*a*b*x + b^2*x^2
])/a])/Sqrt[b^2])/((-a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2])^4*(a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x
+ b^2*x^2])^4) + ((32*a^8*B)/(b^4*Sqrt[b^2]) + (448*a^7*B*x)/(3*b^3*Sqrt[b^2]) + (1888*a^6*B*x^2)/(3*(b^2)^(3/
2)) + (1600*a^5*B*x^3)/(b*Sqrt[b^2]) + (2400*a^4*B*x^4)/Sqrt[b^2] + (1920*a^3*b*B*x^5)/Sqrt[b^2] + 640*a^2*Sqr
t[b^2]*B*x^6 - (448*a^6*B*x*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(3*b^4) - (480*a^5*B*x^2*Sqrt[a^2 + 2*a*b*x + b^2*x
^2])/b^3 - (1120*a^4*B*x^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/b^2 - (1280*a^3*B*x^4*Sqrt[a^2 + 2*a*b*x + b^2*x^2])
/b - 640*a^2*B*x^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2] - (64*a^4*B*x^4*Log[-a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b
^2*x^2]])/Sqrt[b^2] - (256*a^3*b*B*x^5*Log[-a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2]])/Sqrt[b^2] - 384*
a^2*Sqrt[b^2]*B*x^6*Log[-a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2]] - (256*a*b^3*B*x^7*Log[-a - Sqrt[b^2
]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2]])/Sqrt[b^2] - (64*b^4*B*x^8*Log[-a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b^
2*x^2]])/Sqrt[b^2] + (64*a^3*B*x^4*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Log[-a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b
^2*x^2]])/b + 192*a^2*B*x^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Log[-a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2]
] + 192*a*b*B*x^6*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Log[-a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2]] + 64*b^2
*B*x^7*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Log[-a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2]] - (64*a^4*B*x^4*Log
[a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2]])/Sqrt[b^2] - (256*a^3*b*B*x^5*Log[a - Sqrt[b^2]*x + Sqrt[a^2
 + 2*a*b*x + b^2*x^2]])/Sqrt[b^2] - 384*a^2*Sqrt[b^2]*B*x^6*Log[a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2
]] - (256*a*b^3*B*x^7*Log[a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2]])/Sqrt[b^2] - (64*b^4*B*x^8*Log[a -
Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2]])/Sqrt[b^2] + (64*a^3*B*x^4*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Log[a -
Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2]])/b + 192*a^2*B*x^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Log[a - Sqrt[b^2
]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2]] + 192*a*b*B*x^6*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Log[a - Sqrt[b^2]*x + Sqrt[
a^2 + 2*a*b*x + b^2*x^2]] + 64*b^2*B*x^7*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Log[a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*
x + b^2*x^2]])/((-a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b^2*x^2])^4*(a - Sqrt[b^2]*x + Sqrt[a^2 + 2*a*b*x + b
^2*x^2])^4)

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 175, normalized size = 0.93 \begin {gather*} \frac {25 \, B a^{4} - 3 \, A a^{3} b + 12 \, {\left (4 \, B a b^{3} - A b^{4}\right )} x^{3} + 18 \, {\left (6 \, B a^{2} b^{2} - A a b^{3}\right )} x^{2} + 4 \, {\left (22 \, B a^{3} b - 3 \, A a^{2} b^{2}\right )} x + 12 \, {\left (B b^{4} x^{4} + 4 \, B a b^{3} x^{3} + 6 \, B a^{2} b^{2} x^{2} + 4 \, B a^{3} b x + B a^{4}\right )} \log \left (b x + a\right )}{12 \, {\left (b^{9} x^{4} + 4 \, a b^{8} x^{3} + 6 \, a^{2} b^{7} x^{2} + 4 \, a^{3} b^{6} x + a^{4} b^{5}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(B*x+A)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="fricas")

[Out]

1/12*(25*B*a^4 - 3*A*a^3*b + 12*(4*B*a*b^3 - A*b^4)*x^3 + 18*(6*B*a^2*b^2 - A*a*b^3)*x^2 + 4*(22*B*a^3*b - 3*A
*a^2*b^2)*x + 12*(B*b^4*x^4 + 4*B*a*b^3*x^3 + 6*B*a^2*b^2*x^2 + 4*B*a^3*b*x + B*a^4)*log(b*x + a))/(b^9*x^4 +
4*a*b^8*x^3 + 6*a^2*b^7*x^2 + 4*a^3*b^6*x + a^4*b^5)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {sage}_{0} x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(B*x+A)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [A]  time = 0.06, size = 168, normalized size = 0.89 \begin {gather*} -\frac {\left (-12 B \,b^{4} x^{4} \ln \left (b x +a \right )-48 B a \,b^{3} x^{3} \ln \left (b x +a \right )+12 A \,b^{4} x^{3}-72 B \,a^{2} b^{2} x^{2} \ln \left (b x +a \right )-48 B a \,b^{3} x^{3}+18 A a \,b^{3} x^{2}-48 B \,a^{3} b x \ln \left (b x +a \right )-108 B \,a^{2} b^{2} x^{2}+12 A \,a^{2} b^{2} x -12 B \,a^{4} \ln \left (b x +a \right )-88 B \,a^{3} b x +3 A \,a^{3} b -25 B \,a^{4}\right ) \left (b x +a \right )}{12 \left (\left (b x +a \right )^{2}\right )^{\frac {5}{2}} b^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(B*x+A)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x)

[Out]

-1/12*(-12*B*ln(b*x+a)*x^4*b^4-48*B*ln(b*x+a)*x^3*a*b^3+12*A*b^4*x^3-72*B*a^2*b^2*x^2*ln(b*x+a)-48*B*a*b^3*x^3
+18*A*a*b^3*x^2-48*B*a^3*b*x*ln(b*x+a)-108*B*a^2*b^2*x^2+12*A*a^2*b^2*x-12*B*a^4*ln(b*x+a)-88*B*a^3*b*x+3*A*a^
3*b-25*B*a^4)*(b*x+a)/b^5/((b*x+a)^2)^(5/2)

________________________________________________________________________________________

maxima [A]  time = 0.65, size = 201, normalized size = 1.07 \begin {gather*} \frac {1}{12} \, B {\left (\frac {48 \, a b^{3} x^{3} + 108 \, a^{2} b^{2} x^{2} + 88 \, a^{3} b x + 25 \, a^{4}}{b^{9} x^{4} + 4 \, a b^{8} x^{3} + 6 \, a^{2} b^{7} x^{2} + 4 \, a^{3} b^{6} x + a^{4} b^{5}} + \frac {12 \, \log \left (b x + a\right )}{b^{5}}\right )} - \frac {1}{12} \, A {\left (\frac {12 \, x^{2}}{{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} b^{2}} + \frac {8 \, a^{2}}{{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} b^{4}} + \frac {6 \, a}{b^{6} {\left (x + \frac {a}{b}\right )}^{2}} - \frac {8 \, a^{2}}{b^{7} {\left (x + \frac {a}{b}\right )}^{3}} - \frac {3 \, a^{3}}{b^{8} {\left (x + \frac {a}{b}\right )}^{4}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(B*x+A)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="maxima")

[Out]

1/12*B*((48*a*b^3*x^3 + 108*a^2*b^2*x^2 + 88*a^3*b*x + 25*a^4)/(b^9*x^4 + 4*a*b^8*x^3 + 6*a^2*b^7*x^2 + 4*a^3*
b^6*x + a^4*b^5) + 12*log(b*x + a)/b^5) - 1/12*A*(12*x^2/((b^2*x^2 + 2*a*b*x + a^2)^(3/2)*b^2) + 8*a^2/((b^2*x
^2 + 2*a*b*x + a^2)^(3/2)*b^4) + 6*a/(b^6*(x + a/b)^2) - 8*a^2/(b^7*(x + a/b)^3) - 3*a^3/(b^8*(x + a/b)^4))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^3\,\left (A+B\,x\right )}{{\left (a^2+2\,a\,b\,x+b^2\,x^2\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(A + B*x))/(a^2 + b^2*x^2 + 2*a*b*x)^(5/2),x)

[Out]

int((x^3*(A + B*x))/(a^2 + b^2*x^2 + 2*a*b*x)^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3} \left (A + B x\right )}{\left (\left (a + b x\right )^{2}\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(B*x+A)/(b**2*x**2+2*a*b*x+a**2)**(5/2),x)

[Out]

Integral(x**3*(A + B*x)/((a + b*x)**2)**(5/2), x)

________________________________________________________________________________________